Exponential smoothing model selection for forecasting
نویسندگان
چکیده
Applications of exponential smoothing to forecasting time series usually rely on three basic methods: simple exponential smoothing, trend corrected exponential smoothing and a seasonal variation thereof. A common approach to selecting the method appropriate to a particular time series is based on prediction validation on a withheld part of the sample using criteria such as the mean absolute percentage error. A second approach is to rely on the most appropriate general case of the three methods. For annual series this is trend corrected exponential smoothing: for sub-annual series it is the seasonal adaptation of trend corrected exponential smoothing. The rationale for this approach is that a general method automatically collapses to its nested counterparts when the pertinent conditions pertain in the data. A third approach may be based on an information criterion when maximum likelihood methods are used in conjunction with exponential smoothing to estimate the smoothing parameters. In this paper, such approaches for selecting the appropriate forecasting method are compared in a simulation study. They are also compared on real time series from the M3 forecasting competition. The results indicate that the information criterion approaches provide the best basis for automatedmethod selection, theAkaike information criteria having a slight edge over its information criteria counterparts. D 2005 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
منابع مشابه
A new adaptive exponential smoothing method for non-stationary time series with level shifts
Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting pr...
متن کاملPresenting a model for Multiple-step-ahead-Forecasting of volatility and Conditional Value at Risk in fossil energy markets
Fossil energy markets have always been known as strategic and important markets. They have a significant impact on the macro economy and financial markets of the world. The nature of these markets are accompanied by sudden shocks and volatility in the prices. Therefore, they must be controlled and forecasted by using appropriate tools. This paper adopts the Generalized Auto Regressive Condition...
متن کاملThe Impact of Forecasting Methods Combination for Reducing Bullwhip Effect in a Four-level Supply Chain under Variable Demand
Bullwhip effect in a supply chain, makes inefficiencies such as excess inventory and overdue orders during the chain. These problems can be reduced by appropriate predictions. Forecasting must be done in all levels of a supply chain. This research addresses the problem of optimal combination of forecasting to reduce the bullwhip effect in a four-level supply chain when demand is variable. For t...
متن کاملRobust forecasting with exponential and holt-winters smoothing
Robust versions of the exponential and Holt–Winters smoothing method for forecasting are presented. They are suitable for forecasting univariate time series in the presence of outliers. The robust exponential and Holt–Winters smoothing methods are presented as recursive updating schemes that apply the standard technique to pre-cleaned data. Both the update equation and the selection of the smoo...
متن کاملDetermination of Exponential Smoothing Constant to Minimize Mean Square Error and Mean Absolute Deviation
Exponential smoothing technique is one of the most important quantitative techniques in forecasting. The accuracy of forecasting of this technique depends on exponential smoothing constant. Choosing an appropriate value of exponential smoothing constant is very crucial to minimize the error in forecasting. This paper addresses the selection of optimal value of exponential smoothing constant to ...
متن کامل